Determination of epinephrine in the presence of uric acid and folic acid using nanostructure-based electrochemical sensor
Authors
Abstract:
Fabrication and electrochemical characterization of a sensor for the determination of epinephrine (EP), uric acid (UA) and folic acid (FA) is described. The sensor was prepared using carbon paste electrode (CPE) modified with 3,4-dihydroxybenzaldehyde-2,4-dinitrophenylhydrazone (DDP) and carbon nanotubes (CNTs), which makes the modified electrode highly sensitive for the electrochemical detection of these compounds. Cyclic voltammetry (CV) at various scan rates was used to probe the fabrication and characterization of the modified electrode. In order to characterize these new modified electrode, the electroanalytical response was evaluated for EP performing cyclic voltammetry, differential pulse voltammetry and chronoamperometry experiments. Under the optimum pH of 7.0, the oxidation of EP occurs at a potential about 215 mV less positive than that of the unmodified CPE. Differential pulse voltammetry (DPV) of EP at the modified electrode exhibited two linear dynamic ranges with a detection limit (3σ) of 70 nM. DPV was used for simultaneous determination of EP, UA and FA at the modified electrode, and quantification of EP in some real samples by the standard addition method.
similar resources
determination of epinephrine in the presence of uric acid and folic acid using nanostructure-based electrochemical sensor
fabrication and electrochemical characterization of a sensor for the determination of epinephrine (ep), uric acid (ua) and folic acid (fa) is described. the sensor was prepared using carbon paste electrode (cpe) modified with 3,4-dihydroxybenzaldehyde-2,4-dinitrophenylhydrazone (ddp) and carbon nanotubes (cnts), which makes the modified electrode highly sensitive for the electrochemical detect...
full textSelective Electrochemical Nanosensor based on Modified Carbon Paste Electrode for Determination of NADH in the presence of Uric Acid
The electrochemical properties of a modified carbon paste electrode with the synthesized compound of 2,2'-[1,7–heptanediylbis(nitrilomethylidene)]-bis(4-hydroxyphenol) (DHBH) and graphite nanoparticle (GN) were studied by cyclic voltammetry (CV), chronoamperometry and differential pulse voltammetry (DPV) methods. The proposed electrode shows excellent electrocatalytic activity towards the oxida...
full textFabrication of Graphene–LaMnO3 Sensor for Simultaneous Electrochemical Determination of Dopamine and Uric Acid
Dopamine (DA) and uric acid (UA) are two of important bimolecular widely circulated in body blood. Therefore, development of simple and rapid methods for simultaneous determination of them in routine analysis has a great significance for many researchers. Therefore, for the first time, nanocomposite of graphene (Gr)LaMnO3has been utilized to fabricate the new ...
full textdetermination of olanzapine and thiourea using electrodes modified by dna and film of copper-cobalt hexacyanoferrate & investigation of electro-oxidation of some catechol derivatives in the presence of 4-phenylsemicarbazid
چکیده هدف از این کار بررسی الکترواکسیداسیون کتکول و مشتقات آن در حضور 4-فنیل سمی کاربامازید بوده است اکسیداسیون کتکولها ترکیبات نا پایدار کینونها را تولید می کنند که این ترکیبات می تواند در واکنش مایکل بعنوان پذیرنده نوکلئوفیل عمل نمایند. در ادامه اکسایش کتکولهای (a-c1) را درحضور 4-فنیل سمی کاربامازید در محلول آب/استونیتریل (90/10)بوسیله ولتامتری چرخه ای و کولن متری در پتانسیل ثابت مورد بررسی ...
15 صفحه اولManganese Ferrite Nanocomposite Modified Electrochemical Sensor for the Detection of Guanine and Uric Acid
Manganese ferrite nanoparticles were produced by applying the combustion technique using the manganese acetate and ferric nitrate as the starting material. Analytical techniques like FESEM and TEM were utilized to characterize the synthesized materials. The typical size was observed in the range of 12 to 14 nm with a cubic structure. The synthesized material was used as an electrochemical senso...
full textElectrochemical Study of Iodide in the Presence of 2-Thiobarbituric Acid-Catalytic Determination of 2-Thiobarbituric Acid
Electrochemical oxidation of iodide has been studied in the presence of 2-thioborbituric acid using cyclic voltammetry and controlled-potential coulometry. The results indicate that, the resulting iodine takes part in halogenations reaction with 2-thiobarbituric acid. In addition, the present data are indicative of the suitability of iodide as a quasi mediator for determination of 2-thiobar...
full textMy Resources
Journal title
volume 1 issue 3
pages 181- 190
publication date 2011-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023